Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-1934087

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.


Subject(s)
Acute Lung Injury/metabolism , Deubiquitinating Enzymes/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Humans , Pneumonia/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Ubiquitination/physiology
2.
mSystems ; 7(3): e0005822, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1854245

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become a severe global public health crisis. Therefore, understanding the molecular details of SARS-CoV-2 will be critical for fighting the virus's spread and preventing future pandemics. In this study, we globally profiled the stability of SARS-CoV-2-encoded proteins, studied their degradation pathways, and determined their correlation with the antibody responses in patient plasma. We identified 18 proteins with unstable half-lives and 6 relatively stable proteins with longer half-lives. The labile SARS-CoV-2 proteins were degraded mainly by the ubiquitin-proteasome pathway. We also observed a significant correlation between antibody levels and protein half-lives, which indicated that a stable antigen of SARS-CoV-2 could be more effective for eliciting antibody responses. In addition, levels of antiviral antibodies targeting NSP10 were found to be negatively correlated with systemic levels of interleukin 6 (IL-6) in patients. These findings may facilitate the development of novel therapeutic or diagnostic approaches. IMPORTANCE SARS-CoV-2, the etiological cause of COVID-19, carries 29 genes in its genome. However, our knowledge of the viral proteins in biological and biochemical aspects is limited. In this study, we globally profiled the stability of the viral proteins in living lung epithelial cells. Importantly, the labile SARS-CoV-2-encoded proteins were mainly degraded through the ubiquitin-proteasome pathway. Stable proteins, including spike and nucleocapsid, of SARS-CoV-2 were more effective in eliciting antibody production. The levels of antiviral antibodies targeting NSP10 were negatively correlated with systemic levels of IL-6 in COVID-19 patients.

3.
Open Forum Infect Dis ; 7(5): ofaa153, 2020 May.
Article in English | MEDLINE | ID: covidwho-141772

ABSTRACT

BACKGROUND: Clinical findings indicated that a fraction of coronavirus disease 2019 (COVID-19) patients diagnosed as mild early may progress to severe cases. However, it is difficult to distinguish these patients in the early stage. The present study aimed to describe the clinical characteristics of these patients, analyze related factors, and explore predictive markers of the disease aggravation. METHODS: Clinical and laboratory data of nonsevere adult COVID-19 patients in Changsha, China, were collected and analyzed on admission. A logistic regression model was adopted to analyze the association between the disease aggravation and related factors. The receiver operating characteristic curve (ROC) was utilized to analyze the prognostic ability of C-reactive protein (CRP). RESULTS: About 7.7% (16/209) of nonsevere adult COVID-19 patients progressed to severe cases after admission. Compared with nonsevere patients, the aggravated patients had much higher levels of CRP (median [range], 43.8 [12.3-101.9] mg/L vs 12.1 [0.1-91.4] mg/L; P = .000). A regression analysis showed that CRP was significantly associated with aggravation of nonsevere COVID-19 patients, with an area under the curve of 0.844 (95% confidence interval, 0.761-0.926) and an optimal threshold value of 26.9 mg/L. CONCLUSIONS: CRP could be a valuable marker to anticipate the possibility of aggravation of nonsevere adult COVID-19 patients, with an optimal threshold value of 26.9 mg/L.

SELECTION OF CITATIONS
SEARCH DETAIL